AD=A100 773  VIRGINIA POLYTECHNIC INST ANO STATE UNIV BLACKSBURG

UNCLASSIFIED RR~=G-9

R

10
20773

F/8 1271 -
NONSTANDARD OISTRIBUTIONS IN TWO=STAGE LEAST SOUARES. (U)
MAY 81 M MARCUCCI» D R JENSEN DAAC!’-"O-‘-DI"Z
. ARO=13194 . 9-n




| /5 /44 4—m

7 e
)
\é, NONSTAN.)ARD QISTRIBUTIONS ™

() “;WO—STAL-E LEAST SQUARES .
g RESEARCH m’ar N0, Q-9 EVELﬁ
P~ RR-E- &e--]
% / ;MRK/‘MARCDCC; mgn -§°,é?NSEN ]
PR ELECTE
(// MAY 2981 JUN 30 1981
U. S. ARMY RESEARCHLOFFICE
GRANT N frnmx;zm -78-G- puz /
VIRGINIA POLYTECHNIC INSTITUTE
AND STATE UNIVERSITY
D
O
P
[ o)
L_"j' APPROVED FOR PUBLIC RELEASE;
e DISTRIBUTION UNLIMITED

Yo7 s0k
81 6 __29 343

T L RETNGRET: Lt——




THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS
AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO
DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.




ITEM

ABSTRACT

INTRODUCTTON

NONSTANDARD DISTRIBUTTONS

RESULTS AND DISCUSSTON

REFERENCES

TABLE

OF

CONTENTS

PAGE
|
}
11
Accession For
NTIS GRAXI
DTIC TAB
Unanncunced O
Justification
By -
Distribution/ B
“fvailability Codes
B Avail and/or
Dist Speclal
(

Al |




1.1ST OF TABLES

TABLE 2.1. Distributions ot the standardized

9 2
Gaussian errors with § 7/t 7 = 1000, (b) Gaussian errors

and (¢) contaminated Gaussian errors obtained as a mixture ot

with proportions l-p and p, respectively, for K, =

TABLE 2.2,

P
Caussian errors with 7/t = 1000, (b) Gaussian errors

and (¢) contaminated Gaussian errors obtained as

K, =

with proportions l-p and p, respectively, for

TABLE 3.1. Description of the scale mixtures of

studied numerically.

TABLE 3.2. Selected percentiles and range of the TSLS

Caussian and various scale mixtures of Gaussian crrors

. 2
of 1, and various &,

freedom, o =

TABLE 3.3. Selected percentiles and range of the TSLS

Gaussian and various scale mixtures of Gaussian errors

of freedom, « = 1, and various 62.

TABLE 3.4. Selected percentiles and range of the TSLS

Gaussian and various scale mixtures of Gaussian errors

”
of freedom, « = 5, and various §°.

TABLE 3.5. Selected percentiles and range of the TSLS
Gaussian and various scale mixtures of Gaussian errors

of freedom, a« = 0, and various 62.

ii

TSLS estimator

3 dt’j", recs of

a mixture of

10 degrees of

under (a)
with ”/12 = 5000,
(n) and (b)

frecdon.

Distributions of the standardized TSLS estimator under (a)

}

2
with +7/¢" = 5000,

and (b)

()

‘recdom,

spherical Gaunssian cerrvors

estimator und v

for Kq = 3 deprees

estimator under

for K2 =

3 degrees

estimator under

for K, = 3 degrees

estimator under

for Kz = 10 degrees




TABLE 3.6. Selected percentiles and range o!

the TSLS estimator

Gaussian and various scale mixtures of Gaussian crrors for K =

9
of freedom, a = 1, and various &7 .

TABLE 3.7. Selected percentiles and range of

the TSLS estimator

Gaussian and various scale mixtures of Gaussidan errors for K. =

2
of freedom, a = 5, and various §".

iii

2

under

10 deprees

under

10 degrees




NONSTANDARD DISTRIBUTTONS IN
TWO=STACE LEAST SQuUanis
bﬂlrk Marcucei and DR, Jensen
Virginia Polvtechnic Iastitute
and State University
0. ABSTRACT
In estimating the cocfficient of an endovenous variahle in a single
cquation of a system of linear equations, Anderson and Sawa (1973) ex-
pressed the distribution of the two-stage least-squares (TSLS) estinator
as o doubiv noncentral F o distribution. We relax their assumption of in-
dependent Gaussian orrors, taking instead a scale mixture of spherical
Caussian laws in a class containing the sphevical stable distributions,
The resulting distribution of the TSLS estimator s a mixture of doubiv
nopcentral F distributieons mixed over the noncentrality parameters, and
for suitable mixtures the normal-theory distribution is robust. Computa-
tions reported for contaminated spherical Gaussian and spherical Cauchv

crrors are compared with the standard case,

1. INTRODUCTTON
Various procedures have been advocated for estimating the coctficents
in simultaneous systems of linear equations. Arguments supporting these
procedures often appeal to asymptotic properties of the estimators; i-
practice, however, their smatl-sample proper:ies are of interest as well.
A recent survev of applicable small-sample distribution theorv was under-

taken by Mariano (1980). oOnc technique in wide usape is two-staee
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Key Words and phrases. Simultaneous equations: two-stage least squares;

spherical error distributions; mixtures of distributions; robustness.




least-squares (TSLS) cstimation under the standavd assumption that errors
of the model are independent, identicalle distributed (1idy Gaussian
variables. Under these assumptions Anderson and Sawa (1973, 1479) Jerived
and later tabulated the exact distribution ot the TSLS vstimator for the
cocfficient of an endogenous variable in a sincle cquation or 4 lincar
svstem.  Raj (1980) studied effects of non-Gaussian errors on various
estimators, including the TSLS estimator, using Monte Carlo wothods, o
date, however, analvtical investigations of the distributions f 1508
estimators appear to have been confined to the standard case or iid
Gaussian errors,

In this paper we study the exact distribution of the TSLS cstimator
for the cocefficient of an endogenous variable in a single equation under
nonstandard assumpt ions, replacing normatity with an error distribution
in the class of scale mixtures of spherical Caussian laws (ef. Kelker
(1970), for example). Our reasons for considering this class follow,

(i) Beginning with Mandelbrot (1960,1963,1969), infinite-variance
distributions including the stable laws have been usced te model cconomic
variables such as stock prices; of . also Fama (196%), McCulloush (1975)
Press (1975), and Samuclson (1976).  The class considered here contains
the spherical stable laws and other heavy-tailed distributions whose
marginals figure prominently in the work cited.

(ii1) The distributions of Anderson and Sawa (1973,1979) vive approxi-
mations in the case of non-Gaussian errors attracted to the Caussian law
under conditions for central limit theory. ‘The present study vields
approximations in the case of errors not having sccond moments whose dis-
tributions are attracted to a spherical stable law,

(iii) Our approach admits a Bayesian view in which the distributions

studied are posterior distributions of the TSLS estimators, the evvors




heing condictionaliy {id Gaussian with a scale parameter determined by the
realization of a random, envivonment.

(iv) The ordinary least-squares estimators in o ceneral Vincar model
are known to retain certain optimal propertiecs under spherical errors with
and without moments (cf, Jensen (1979)).

(v) For critical linear systems statistical control charts mav be
devised for monitoring the stationarity of o structural relation based on
Gaussian cvrror processes and the work of Anderson and Sawa (1973) . The
present study lavs the foundations for developing such procedures in the
case of spherically invariant processes, as such processes mav be represented
as scale mixtures of spherical Gaussian processes (ef o Hartman and Wintner
(19450)) .

Our program of study follows. In Section 2 we demonstrate under scale
mixtures that the distribution of the TSLS cestimator is a mixturce of doubly
noncentral F distributions mixed over their noncentrality parameters. bHvi-
dence is given supporting the view that normal-theory distributions are
robust for certain mixtures. In Section 3 sclected percentiles of the TSLS
estimator are presented for contaminated spherical Gaussian and spherical

Cauchy errors, and these are compared with the standard distributions.

2. NONSTANDARD DISTRTBUTLONS

Let A(r#s) be a matrix of order (rxs); denote by L(Z) = Nr Q(M,Jr\Z)
~ JETRELAS

that Z(rXs) is a random Gaussian matrix with expectation E(%) = M, the

rows of 7 being independent with the same dispersion matrix L(sxs); and

let “r c'(M,_lrxr) be a scale mixture of the CGaussian laws {Nr

s f

Mt
M, 17(1_xT)) 3
s~ -r -

9t

1 ¢ (0,o)} whose probability density function (pdf) has the representation

(21:)-rs/26m]12[|_r/2

p{Y) exp[—tr(!—@)'(Y—@)F—I/ZTZ]dG(1) 2.1

with G(r) a mixing distribution on (0,«x). Further let xz(v,x) be the




chi-squared distribution having v degrees of treedom and the concentralite

paramceter A, and let Fer,s,4,) be the doubly noncentral ¥ o dictribution

with numerator paramcters (r,?) and denominator parametevs (s, -y,
Following Anderson and Sawa (1973), consider a single structural

cquation of the tvpe

where yo and yoare columns of the observable matrix Y(Is2)5 2 (TR ) s

~1 I 1

a matrix of rank Kl < T consisting of known cxosenous variables; ,1L'r',-l)
i

is a vector of parameters: and u(i=1) is an crror vector.  The structur ol
vquation (2.2) is a member of a svstem of linear cquations whose reduced

Form cquations are represented by

Y = Zii +V [

where 72 = (Zl,z,)) is a matrix of order (I'xK) and rank K = T of cuovenci.

variables; [I(K=2) is a matrix of reduced form parameters part ot ionced ;

i T
= 112
Ty Ta2

conformably with Z; and V{Tx2) is a matrix of random disturbances. 1t is

assumed that (117],'_@22) is of unit rank and that n_ # 0. Anderson and Sawa
(1973) studied the k-class estimators f",k for & in (2.2) under the assumption
that L(V) = N,‘, ,)(O,I,rx;g), with o = [o .1 a (2<2) matrix.

. D - ~ 1]

To find the distribution of the TSLS estimator for g under scale mix-
tures of spherical Gaussian laws, we procecd as in Anderson and Sawa (1973,
1979) atter conditioning on the mixing parameter. Their reduction to a
canonical form and several subsequent transformations are valid, condition-

ally, for scale mixtures, Thus starting with expression (2.7) of Anderson




and Sawa (1979), we obtain the following mixture renreseatation for the
cunulative distribution function (cdf) of the standardiced TSLS cstimator
b for &, namely,

! 1

Y

) . ) ."2
P 7T ({b-1) <) = L P (b)) s w o)de ()
. , 0 . h
(2.0
= I (w .w,,j'v. )(lwl dw,,dei(-)
0 A(x) Sl-l ) -
where
(i) o and - oare as defined in equations (2.4) and (2.8) of Anderson
) ‘)
and Sawa (1979) with o7 = T 2yuu] , F T, and with
2 . . " e -1, .. .
o= }70[XJA7 - é,@}({]él) Zxéﬁljﬁﬂ/m?? (2.5

as 2 noncentrality parameter;

(ii) vy and 1 are random vectors of order (K, <1) such that L(wl,wjix) =

R4
JQK,,I(;’X !ZK)) and Ry = K - Kl;
T N . L iy g2
(iii) A(x) = {(yl,yz)[ylyllyzyz < 0(o) b with o(r) = 1 + 2r(r+1) " +
9
2r7, where
9 L
ro= o4 <(1+7) %6 (2.0)
!
o= 072(8_w12/w22)/I¥‘2 (2.7)

as in expressions (2.10) and (2.9), respectively, of Anderson and Sawa
(1979); and
(iv) (1) is a mixing cdf on (0,=).

[t follows dircctly that
Ll pw fwguy 1) = FORG LK x ()50, () (2.8)

where Al(r) and Az(r) are the noncentrality parameters given at expressions
(2.11) and (2.12) of Anderson and Sawa (1979) with § replaced by §/+ in their

expressions (2.10) - (2.12). Trom our expression (2.8) it is scen that the




conditioning variable ¢ enters the doubly noncentral ¥ odistrizution only
through its noncentrality parameters.  The mconditional odf o the
standardized PSES estimator thus is a mixtare of doubly noncentral F odis-

tributions mixed over their noncentrality parameters, i.o¢.,

=T (bh=-1) 0 X) = J"”I’(\_c]'w]/\f[')w_ <o) I'; THHETEN (7.0)
0 i -

It is clear from remarks on page 704 of Anderson and Sawa (19773 thiat
parallel results can be obtained for the ordinary least-squares (0Ls)

estimator h]. Correspending to (2.9) we have

\\H.V,‘:’,) o
PO T =8) s 1) = L P eiw dw v, e (o) PG o) 2.10)
B | - I B
0
whore
. . — F(T—K . T—K : () ) 5
l.(\\_/nj':\lj/qu[' F (1 I\l,l }\1,\1(.),‘2(1)) (2.11)

The only ditfercence between (2.9) and (2.10) is the number of degrees of
frecdom of the doublvy noncentral F odistribution,

Ve conclude this section with a brief look at the possible robustness
ol the normal-theory digtribution of the TSLS cstimator against error dis-
tributions arising as scale mixtures of spherical Gaussian laws.  Anderson
and Sawa (1979) provided tables for the cdf of the standardized TSLS estima-

i 2
tor in terms of the degrees of freedom (KJ) and the parameters o and &7 de-
tined in (2.7) and (2.5). The values of K, and .« are invariant under the
2 2,2

seale change u > tu in the errors, whercas 67 > 87/17.  Thus the odtf of
the standardized TSLS estimator under seale mixtures of Gaussian ervrorvs is
a weighted average of the normal-theory cdt's corresponding to diftferent
values of §.

A perusal of the tables of Anderson and Sawa (1979) shows that the

standardized cdf often remains fairly stable over a wide ranpe of values of
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N
AT, Mixtures over these ranges accordingly should i ld ooy don
distributicns tor which' the normal-theory distribution o0 the 100 0 0 0 '

is robust., To illustrate, consider the two-point mizine diogribats o

9 9
P{(c7=1) = p =1 - P(17=5) which gives a contaminated wpherioad o
crror distvibution. o the unconditional I'shs estimator b [ T

Y . -
7= 85000 with voa fixed pavameter, then its odf Ts aominture o1 te o !
.y ‘Y )
theory odf's corvesponding to 37/¢7 = 1000 when 50 = 5 and o 7 I
2 . .

when 17 = 1, Selocted poivts of the resultine odf were cvaluated for
PRESEEE O DR T S K, 43,100, and p - SO0 075,090 using the tables of
Arderson and Sawa (1979) 5 the results are aiven in Iable 201 tor K= 3 nd
in Table 2.2 tor K, = 100 A comparison or the normal-theory distributicn:

o
a5 approximations to the distributions under mixtures confirme Uthe rolanstnes-
of the former under certain types of mixtures.,

In the tollowing section we undertake a broader study of the distribation

ot the standardized TSLS estimator under various errov distributions,

3. RESULTS AND DISCUSSTON
In arder to compute the odf of the stand adized FSLS estimator under

various choices for the mixing distribution ¢(:), we follow a procedure sim-

ilar to the one sketched at the end of the preceding scction.  First, for

cach fixed value of the mixing parameter 1, the codtf of the doubly noncentral

Fodistribution is computed using the alyorithm sugpested by Anderson and

Sawa (1979).  The resulting values of these cdf's arce then mined over the

relevant values of ¢ according to G(1).

This procedure is straightforward

when G(1) is discrete.  For continuous mizturces the odf C(1)

is discretized

at the second step on partitioning (0,w) into intervals, assigning the prob-

abilities to mid-points of these intervals, and proceeding as for the dis-

crete case. This procedure is expected to give good approximations to the




e

e

actual distributions when the discretization s retfined sutticiently,

Our numerical studies encompass three dicerete mistures of Bernouldi

and binomial type giving contaminated spherica] daussian erver ., and one

cont inuous mixture using an inverse chi Jdistribution which foes o

pnerical

Cauchy crrors.  The latter isanexaaple of a distribution havine coec sive

B 4
taitls,  In particular, our Tvpe 1 contamination uses 1971 [TV
1
s 2 ) (
PGT=10Y = 00050 Type 2 contamination uses 0o =1) = 0.5, oo 10
’.)
0.5Y; and Tvpe 3 contamination assiyns probabilitices to o7 o 1200 L 10}
gaecording to the bhinomial distvibution
AW ot By ,
¢ J0L05) 7 (0,95) tish
b
with r = 7 - 1. These discrete mixtures pose no difficulty in the comni-

tations.

The spherical Cauchy error law is a T=dimensional sphevieal Sondent's
distribution having unit degree of freedom; multivariate Student's crrors
were considered by Zellner (1976) in connection with OLS estimation in a
goeneral lineor model.  Spherical Cauchy errors in TSLS estimation are

) 9 o

obtained from L(r 7) = v (1,0) on evaluating the cdf of 7(1,M) over .26
intervals, assigning the probabilities of these intervals to the reciprocals
of theilr midpoints, and then mixing the doubly voncentral ¥ odistributions
over these values, As doubling the number of intervals had little cffect

on the values of the odf of the TSLS estimator, the choice of 226 intervals
tor the diserete approximation was deemed adeguate,  The four tvpes of wix-
turvs studied in this section are summarized for convenience in Table 3.1,

Selected percentiles of the distributions of the TSLS estimators are
viven in Tables 3.2 - 3.7 along with the interquartile range as a measure

2
of concentration.  The range of parameters includes 87 ¢ {100,300,1000, !

K000, a e {0,1,5), and the degrees of frecdom Koo {3,10}.  The values

&
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tabulated by Anderson and Sawa (1979) for spherical Caussian crrors are
viven along with our own computiations for the three contaninat jon models
and for spherical Cauchy orrors. The medians and the tail profabilitices
reported appear to be accurate within 40,01, while the interquartile
ranges mav be overstated by an amount in the range (0.00,0.02),

Several chavacteristios of the I'SLS estimator were noted b Anderson
and Sawa (1979) in the case of iid Soms<ian errors. These sane tendencies
arv exhibited under the additional error distributions considered fere.
Virst, except when o o= 0, the TSLS estimator has negative median bias,
Thiu bias increases with « and with the Jdegrees of freedom, K,, but it

)
duecreases with -7, Second, the dispersion ot the TSLS estimator, as
measuraed by the interquartile range, decreases as o and K, increase, but

“

i
it increases with &7, Together these two obscrvations imply that as o oor

K, lncerease, the TSLS estimator is more tightly concentrated, but about
values further removed from the true value orf the parameter. The same
holis true for decreasing values of 52.

In the preceding section we noted that the only difference between
the OLS and TSLS estimators lies in the degrees of frecedom of the doubly
noncentral F distribution. In most practical circumstances one would
expect the number of degrees of freedom for the OLS estimator to be greater
than that for the TSLS estimator. From the foregoing discussion we would
then expect the OLS estimator to have greater bias but smaller interquartile
range than the TSLS estimator. Although the OLS estimator is not studied here
numerically, our expectation agrees with resulrs found by Raj (1980) in a
Monte Carlo study using independent lognormal, uniform, and double expo-
nential errors,

Comparing properties of the TSLS cstimator under nonstandard error

distributions to those for Gaussian errors in Tables 3.2 - 3.7, we note




- r—-r - v -

10

that the median bias for the nonstandard errors is never less than that

for Caussian errors. Comparisons of the interguartile ranges sugpest

that mixing aftects location of the derived distribution of the TSLS

estimator to a ypreater extent than scale.

2

’ For large values of the parameter &7 it is seen that the normal-
theory distribution is reasonably robust against contaminated Canssian
crrors of Types 1 and 3., Type 2 contamination and Cauchy crrors vield
distributions less resembling those for the standard case. From these
studies it appears that rather small departures from the standard Gaussian
assumptions are not crucial over a modestly wide range of the parameters

of the distributions.

———
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TABLE @.1. Distributions of the standardized TSLS estimator under (0) Gaussian errors
with & /¢ = 1000, (b) Gaussian errors with &“/1 = 5000, and (¢) contaminated Gaussian
errors vbtained as a mixture of (a) and (b) with proportions I-p and 1, respectively,
for K, = 3 degrees of freedom.

a =0

X HOREN OGN (ay "‘lh(%)']' T () ’ h )')' ey
e __p=0.50 =0T p=UlY0
-3.00 0.0014 0.0014 0.0014 0.0009 0.0011 0.0010 0.0005  0.0009  0.0009
-2.00 0.0229 0.0228 0.0228 0.0202 0.0217 0.0213 0.0191 0.0212 0.0210
-1.00 0.1587 0.1587 0.1587 0.1664 0.1612 0.1620 0.1667 0.1623 0.1627
-0.20 0.4209 0.4210 0.4209 0.4383 0.4287 0.4311 0.4451  0.4317 0.4331

0.00 0.4997 0.4997 0.4997 0.5175 0.5077 0.5102 0.3245 0.5109 9.5123
0.20 0.5791 0.5790 0.5790 0.5960 0.5866 0.5890 0.6025 0.5809 0.5910
1.00 0.8413 0.8413 0.8413 0.8465 0.8436 0.8444 0.8485  0.8446 0.8450
2.00 0.9771 0.9772 0.9772 0.9750 0.9762 0.9759 0.9742 0.9758 0.4757

3.00 0.9986 0.9986 0.9986 0.9979 0.9983% 0.9982 0.9976 0.9987 0.9981




TABLE 3.1. Description of the scale mixtures of spherical Gaussian errors
studied numerically.

Type Description
2 2
Type 1 P(t7=1) = 0.95 ; P(r7=10) = 0.05
2
Type 2 P(12=1) = 0.5 ; P(z7=10) = 0.5
Type 3 P(t2=r+1) =(’r5>(0.05)r(o.95)15'r
r e {0,1,...,15}
- )
Cauchy L(x 2) = x(1,0)




TABLE 3.2, Selected percentiles and range of the TSLS estimator under Gaussian and
various sgalc mixtures of Gaussian errors for K, =

various oS¢

QUANTITY

Median
Interquartile
Range

2.5 Percentile

Y7.5 Percentile

Median
Interquartile
Range

2.5 Percentile

97.5 vrercentile

Median
[ntorquartile
Range

2.5 Percentile

97.5 Percentile

Median
Interquartile
Range

2.5 Percentile

97.5 Percentile

Gaussian

0.

P

l.

-1

1.

00

.34

.98

.98

.00

.35

.97

.97

.00

.96

.96

.00

35

.96

96

ERROR

Type 1

§° = 100.7
0.00

1.34
-1.98

1.98

7 = 300
0.00

1.35
-1.97

1.97

§7 = 1000

0.00

-1.96
1.90

’
Lt‘ <

= 5000
0.00

1.35
-1.96

1.96

Type 2

U.00
1.30
-2.03

2.03

0.00
1.34

-1.93

0. 00

-1.97

1.97

.00
1.35
-1.96

1.96

3 degrees of freedom, a

.99

.00

.97

.97

.00

.96

.96

.00

.96

.96

= 0, and

.99

.00

.20

.96

.00

.00

.26

.96

.00

.00

.30

.96

.00

.00

.34

.96




TABLE 3.3. Selected percentiles and range of the TSLS estimator under Gaussian and
various scale mixtures of Gaussian errors for K2 = 3 degrees of freedom, a = 1, and
various §6<.

ERROR DISTRIBUTIONS

QUANTITY Gaussian Type 1 Type 2 Type 3 Cauchy
62 = 100
Median ~0.14 -0.16 -0.28 -0.18 -0.26
Interquartile
Range 1.32 1.34 1.24 1.33 1.16
2.5 Percentile -1.84 -1.83 -1.80 ~1.81 -1.82
97.5 Percentile 2.09 2.08 2.09 2.11 2.06
82 = 300
Median -0.08 -0.09 -0.17 -0.10 -0.20
Interquartile
Range 1.34 1.35 1.33 1.34 1.26
2.5 Percentile -1.89 ~1.88 -1.82 -1.86 -1.84
97.5 Percentile 2.04 2.04 2.08 2.05 2.06
62 = 1000
Median -0.05 -0.05 -0.10 -0.06 -0.14
Interquartile
Range 1.35 1.36 1.35 1.35 1.31
2.5 Percentile -1.92 -1.92 -1.88 -1.91 -1.88
97.5 Percentile 2.00 2.00 2.04 2.01 2.04
§2 = 5000
Median -0.02 ~-0.02 -0.04 -0.02 -0.08
Interquartile
Range 1.35 1.36 1.36 1.35 1.34
2.5 Percentile -1.94 -1.94 ~1.92 -1.94 ~1.92
97.5 Percentile 1.98 1.98 2.00 1.98 2.02

PSP



TABLE 3.4. Selected percentiles and range of the TSLS estimator under Gaussian and
various sgale mixtures of Gaussian errors for K2 = 3 degrees of freedom, « = 5, and

various &-.

ERROR DISTRIBUTIONS

QUANTITY Gaussian Type 1 Type 2 Tvpe 3 Cauchy
§¢ = 100
Median -0.19 -0.22 -0.40 ~-0.25 -0.38
Interquartile
Range 1.30 1.32 1.17 1.31 1.12
2.5 Percentile -1.78 -1.76 -1.68 -1.74 -1.72
97.5 Percentile 2,13 2.11 2.07 2,14 2.04
82 = 300
Median -0.11 -0.12 -0.23 -0.14
Interquartile
Range 1.33 1.34 1.30 1.34
2.5 Percentile -1.86 -1.84 -1.76 -1.82
97.5 Percentile 2.00 2.06 2.10 2.08
52 = 1000
Median -0.06 -0.07 -0.13 -0.08
Interquartile
Range 1.33 1.35 1.35 1.36
2.5 Percentile -1.90 -1.90 -1.83 -1.88
97.5 Percentile 2.02 2.02 2.06 2.03
§? = 5000
Median -0.03 -0.03 -0.06 -0.04
Interquartile
Range 1.35 1.35 1.35 1.36
2.5 Percentile -1.94 -1.93 -1.90 -1.93
97.5 Percentile 1.99 1.99 2.01 1.99




TABLE 3.5. Selected percentiles and range of the TSLS estimator under Gaussian and

various scale mixtures of Gaussian errors for K, = 10 degrees of freedom, o« = 0, and
- 9 2

various £,

QUANTITY Gaussian Type 1 Tvpe 2 Tvpe 3 Cauchy
82 = 100
Median 0.00 0.00 .00 0.00 0.00
Interquartile
Range 1.29 1.28 1.13 1.26 1.0
2.5 Percentile -1.91 -1.90 -1.75 -1.88 -1.76
97.5 Percentile 1.91 1.90 1.75 1.88 1.78
§2 = 300
Median 0.00 0.00 0.00 0.00 0.00
Interquartile
Range 1.33 1.33 1.26 1.32 1.14
2.5 Percentile -1.94 -1.94 -1.88 -1.93 -1.84
97.5 Percentile 1.94 1.94 1.88 1.93 1.87
§% = 1000
Median 0.00 0.00 0.00 0.00 0.00
Interquartile
Range 1.34 1.34 1.32 1.34 1.24
2.5 Percentile ~-1.96 -1.95 -1.93 -1.95 -1.90
97.5 Percentile 1.96 1.95 1.93 1.95 1.92
82 = 5000
Median 0.00 0.00 0.00 0.00 0.00
Interquartile
Range 1.35 1.35 1.35 1.35 1.30
2.5 Percentile -1.96 -1.96 -1.96 ~1.96 -1.93
97.5 Percentile 1.96 1.96 1.96 1.96 1.96




TABLE 3.6.

various §&-.

QUANTITY

Median
[nterquartile
Range

2.5 Percentile

97.5 Percentile

Median
Interquartile
Range

2.5 Percentile

97.5 Percentile

Median
Interquartile
Range

2.5 Percentile

Y7.5 Percentile

Median
[nterquartile
Range

2.5 Percentile

97.5 Percentile

Gaussian

| £5]
o

I~
o~

.36

.30

.33

.06

.83

.09

.35

.01

.91

Selected percentiles and range of the TSLS estimator
various sgale mixtures of Gaussian errors for K, = 10 degrees of

ERROR DISTRIBUTIONS

.84

Type 1 Type 2
-__-‘»_W_—Wégﬂ;h}b}§i; -
-0.62 -0, 89
1.22 1.4
-2.19 -1.20
1.41 P10
= 300
-0.39 -0 nh
1.31 1.23
-2.13 -2.20
1.67 1.42
§? = 1000
-0.22 -0.40
1.34 1.32
-2.07 -2.13
1.82 1.67
§2 = 5000
-0.10 -0.19
1.35 1.35
-2.02 -2.05
1.90

under

freedom,

.34
.08

.78

.02

.38

Gaussian

and
I, and

u =

Cauchy

-0.71

1.03

=2.10




TABLE 3.7. Selected percentiles and range of the TSLS estimator under Gaussian and
various scale nmixtures of Gaussian errors for K, = 10 degrees of freedom, « = 5, and
various &2, -

ERROR DISTRIBUTTONS

QUANTITY Gaussian Type 1 Type 2 Tvpe 3 Cauchy
§2 = 100
Median -0.82 ~-0.86 -1.28 -1.00 -1.02
Interquartile
Range 1.15 1.16 0.92 1.08 1.05
2.5 Percentile -2.24 ~2.24 =2.25 -2.26 -2.20
97.5 Percentile 1.19 1.16 (1.82 0.97 1.04
5 = 300
Median -0.50 -0.54 -0.94 -0.62 -0.83
Interquartile
Range 1.28 1.30 1.20 1.26 1.22
2.5 Percentile -2.17 ~2.18 -2.24 -2.20 -2.18
97.5 Percentile 1.58 1.55 1.26 1.44 1.40
87 = 1000
Median -0.28 -0.32 -0.56 -0.36 ~0.58
Interquartile
Range 1.33 1.34 1.32 1.32 1.36
2.5 Percentile -2.09 -2.10 -2.18 -2.12 =2.16
97.5 Percentile 1.77 1.76 1.56 1.71 1.63
62 = 5000
Median -0.13 -0.14 -0.26 -0.16 -0.34
Interquartile
Range 1.34 1.35 1.35 1.34 1.42
2.5 Percentile -2.03 -2.03 -2.09 -2.04 -2.10
97.5 Percentile 1.88 1.88 1.30 1.86 1.81
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